Copy RM E52K10 UNCLASSIFIED UIG 1 21953 ## RESEARCH MEMORANDUM ALTITUDE WIND TUNNEL INVESTIGATION OF THE PROTOTYPE J40-WE-8 TURBOJET ENGINE WITHOUT AFTERBURNER By John E. McAulay and Harold R. Kaufman Lewis Flight Propulsion Laboratory Cleveland, Ohio CLASSIFICATION CHANGED TIMP! ADDICION | To | OLICEASSILIED | | |----|----------------------|--------------------------| | By | authority of 1PA-#17 | Effect. Date 3/10/60 954 | CLASSIFIED DOCUMENT This material contains information affecting the National Defense of the United States within the menning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON August 6:1958 CONFIDENTIAL Abdula HAL LABORATORY #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM ALTITUDE WIND TUNNEL INVESTIGATION OF THE PROTOTYPE J40-WE-8 TURBOJET ENGINE WITHOUT AFTERBURNER By John E. McAulay and Harold R. Kaufman #### SUMMARY An investigation was conducted in the Lewis altitude wind tunnel to evaluate the performance characteristics of the prototype J40-WE-8 turbojet engine without an afterburner. Data were obtained with an electronic control operative and inoperative. The performance data were obtained at altitudes from 15,000 to 60,000 feet and flight Mach numbers of 0.17 to 1.68. Fixed-exhaust-nozzle data showed that in general increasing altitude resulted in an increase in corrected net thrust at a given corrected engine speed. These data also showed that above a corrected engine speed of 7000 rpm a change in altitude at a given corrected engine speed had no effect on the corrected air flow. A method is presented to define the effect of changes in engine operating and flight conditions on the pumping and air-flow characteristics and the combustion efficiency. This made it possible to calculate thrust and fuel flow for conditions other than those at which the data were obtained. These calculated values were in close agreement with values obtained in the direct investigation. #### INTRODUCTION As part of a comprehensive investigation of the J4O turbojet engine conducted at the NACA Lewis altitude wind tunnel, the steady-state engine performance of the prototype J4O-WE-8 turbojet engine without afterburner was obtained and is presented herein. Preliminary performance tests of an earlier model, the XJ4O-WE-6, revealed a severe surge condition in the compressor at high corrected engine speeds (reference 1). A basic redesign of the compressor and other modifications in the compressor and the combustor were incorporated in the XJ4O-WE-6 turbojet engine (references 2 and 3). In this report the modified engine is designated "the prototype J4O-WE-8 without afterburner." Performance data presented herein were obtained over a range of engine speeds at five fixed settings of the variable-area exhaust nozzle. These data were obtained strattings from 15,000 to 45,000 feet and at flight Mach numbers of 0.62 and 0.99. Data were also obtained with an open exhaust nozzle at altitudes of 50,000 and 55,000 feet at a flight Mach number of 0.62. In addition, some data were obtained at flight Mach numbers as high as 1.68 at altitudes of 55,000 and 60,000 feet by a different method of simulation wherein engine-inlet temperature and pressure, but not tunnel static or altitude ambient pressure, are reproduced. The use of the engine pumping characteristics made it possible to calculate engine performance for a greater range of flight Mach numbers and altitudes than were experimentally investigated. The data obtained at fixed settings of the variable-area exhaust nozzle are presented in both graphical and tabular form. In addition, data with an electronic engine control operative are also presented in tabular form. #### APPARATUS AND INSTALLATION The prototype J40-WE-8 turbojet engine without afterburner has a static sea-level thrust rating of 7500 pounds at an engine speed of 7260 rpm and a turbine-inlet temperature of 1885° R (1425° F). At this operating condition the air flow is approximately 142 pounds per second. The engine components included a divided inlet duct (fig. 1), an eleven-stage axial-flow compressor, an annular combustor, a two-stage turbine, a tail pipe, and a variable-area exhaust nozzle. Without the after-burner the engine length is 186 inches and the maximum diameter 43 inches. The dry weight of the engine and accessories is about 3000 pounds. The engine was mounted on a wing section that spanned the 20-foot-diameter test section of the altitude wind tunnel (fig. 2). Dry refrigerated air was supplied to the engine from the tunnel make-up air system through a duct which was divided and connected to the engine inlets. Throttle valves installed in the main duct permitted regulation of the pressure at the engine inlet. Engine thrust and drag measurements by the tunnel balance scales were made possible by the frictionless slip joint located in the main duct upstream of the engine. Instrumentation for measuring pressures and temperatures was installed at various stations in the engine (fig. 3). Pressure measurements at the exhaust-nozzle inlet were available for only a small portion of the investigation. Turbine-inlet radial temperature distributions were determined by ten traversable sonic-flow thermocouple probes. #### PROCEDURE Engine performance data presented in this report were obtained at the flight conditions shown by the following table: | Altitude (ft) | | | F | Light | Me | ch | numbe | er | | |-----------------------------------|------|-------------|-----------|-------|----|----|----------|------|------| | (10) | 0.17 | 0. | 62 | 0.92 | ٥. | 99 | 1.19 | 1.46 | 1.68 | | 15×10 ³ 35 45 50 55 60 | х | x
x
x | * * * / / | // | x | * | <i>\</i> | / | >> | ^{*}control data The control scheduled data included open-exhaust-nozzle operating lines. The fixed-exhaust-nozzle data were obtained at projected exhaustnozzle areas of 367, 421, 449, 479, and 535 square inches at several engine speeds for each exhaust-nozzle area. The fixed-exhaust-nozzle data are given in table I. Similarly, the control data are given in table II but are not presented graphically because standard inlet temperatures could not be maintained for several flight conditions. In order to obtain the various flight conditions, the air flow through the make-up air duct was throttled from approximately sea-level pressure to a total pressure at the engine inlet corresponding to the desired flight Mach number at a given altitude. For most of the runs, the tunnel pressure was set at the desired altitude ambient pressure. In the calculation of flight Mach number, complete ram-pressure recovery at the engine inlet was assumed. The temperature of the inlet air approximated NACA standard values except that the minimum temperature obtained was about 440° R. The engine fuel used was MIL-F-5624 having a lower heating value of 18,700 Btu per pound and a hydrogen-carbon ratio of 0.171. The fuel temperature entering the engine fuel system was about 80° F. The altitude at which standard altitude pressure could be maintained is limited by exhauster capacity. To extend the range of the ^{*}fixed exhaust-nozzle data rated speed, "military" and "normal" turbine-inlet temperatures investigation to higher flight Mach numbers and altitudes, a technique was used wherein the engine performance could be obtained irrespective of tunnel pressure, as long as the tunnel pressure was less than the exhaust-gas total pressure. The engine-inlet pressures and temperatures which would exist at these flight conditions were reproduced while the pressure altitude in the tunnel test section was maintained at any convenient value. The variable-area exhaust nozzle was adjusted as necessary to obtain the desired values of engine temperature ratio. As indicated in reference 4, for given engine-inlet conditions and fixed engine speed, the engine air flow, fuel flow, and pressure ratio are not dependent on the ambient-air pressure for operation at a given engine-temperature ratio. The thrust was calculated from measured values of turbine-outlet pressure and temperature and engine air flow by the method given in appendix A. #### RESULTS AND DISCUSSION #### Generalized Performance Typical engine performance data obtained at a flight Mach number of 0.62 and at two exhaust-nozzle areas are shown for altitudes from 15,000 to 55,000 feet in figure 4. The two exhaust-nozzle areas chosen were the largest and smallest at which a full range of engine speeds was obtained. These data have been corrected by—the factors δ and θ derived in reference 5 and defined in appendix A. The effect of altitude on corrected air flow is presented in figures 4(a) and 4(b). At corrected engine speeds above 7000 rpm, the data generalized to a single curve; however, at corrected engine speeds below 7000 rpm, the corrected air flow decreased as altitude was increased at a given corrected engine speed. The corrected fuel flow (figs. 4(c) and 4(d)), the corrected specific fuel consumption (figs. 4(e) and 4(f)), and the corrected exhaustgas temperature (figs. 4(g) and 4(h)) increased as altitude was increased at a given corrected engine speed. Decreases in compressor and turbine efficiencies resulting from the lower Reynolds numbers at the higher altitudes required an increase in corrected enthalpy rise per pound across the engine to maintain the same corrected engine speed. Higher compressor pressure ratios resulted from the higher corrected temperatures at the turbine inlet (reflected by turbine-outlet temperatures). At high corrected engine speeds, the corrected air flow did not vary appreciably with compressor pressure ratio and no shift in the compressor characteristic curves occurred with altitude; hence, the corrected air flow generalized. At lower corrected 5 engine speeds (below 7000 rpm), the
effect of higher compressor pressure ratio and the shift in the compressor characteristics resulted in lower corrected air flows for higher altitudes. Examination of the data shows that corrected enthalpy rise across the engine increased with altitude as a result of the higher corrected temperature rise across the engine even at low speeds where the corrected air flow decreased. This corrected enthalpy rise required an increase in corrected fuel flow. However, as the combustion efficiency is adversely affected by both high altitudes and low engine speeds (reference 6), the effect of altitude on corrected fuel flow (and corrected specific fuel consumption) will be even greater than would be expected from consideration of changes in corrected exhaust-gas temperature and air flow, especially at low corrected engine speeds. Except at low corrected engine speeds, the corrected net thrust increased as altitude was increased at a given corrected engine speed (figs. 4(i) and 4(j)). Even at low corrected engine speeds this trend was evident at altitudes above 50,000 feet. These trends in corrected net thrust, which are similar to those shown in reference 7, are due to changes in corrected air flow, exhaust-gas temperature, and turbine-inlet pressure which are affected by decreased component efficiencies with increased altitude. At lower corrected engine speeds where the change in corrected net thrust with altitude is less (in some cases nonexistent) the decrease in corrected air flow offsets the increase in corrected exhaust-gas temperature and pressure. #### Performance Maps The engine performance maps presented in figure 5 were crossplotted from data shown in figure 4 and similar data for other exhaustnozzle areas. A map was constructed for each of the four flight conditions at which data for a full range of exhaust-nozzle areas and engine speeds were obtained. The coordinates of these maps are exhaustgas temperature and engine speed with lines of constant net thrust, specific fuel consumption, and projected exhaust-nozzle area superimposed. Also shown are lines that indicate the exhaust-gas temperature that gives limiting turbine-inlet bulk and local temperatures. The limiting local turbine-inlet temperature is reached when the temperature at any radial position at the turbine inlet equals the manufacturer's specified limit for that particular radial position (reference 3). Curves shown above this latter limit were extrapolated. The minimum specific fuel consumption encountered at these four flight conditions was about 1.20 pounds per hour per pound thrust and occurred at an altitude of 35,000 feet and a flight Mach number of 0.62 (fig. 5(c)). At the other flight conditions investigated, the minimum specific fuel consumption was about 1.25 pounds per hour per pound thrust. At high engine speeds, closing the exhaust nozzle from an area of 421 to 367 square inches resulted, in general, in an increase in specific fuel consumption. This increase is associated with a reduction in compressor efficiency as the compressor pressure ratio is increased (reference 2). As total pressure at the engine inlet was reduced, the exhaust-gas temperature at which limiting turbine-inlet local temperature occurred approached the exhaust-gas temperature at which limiting turbine-inlet bulk temperature was encountered (fig. 5). As stated in reference 3, this is caused by the closer matching of the turbine-inlet temperature profiles with the manufacturer's specified profile as the engine-inlet total pressure was decreased. If the actual and the recommended profile were identical, the exhaust-gas temperature would, of course, be the same for either turbine-inlet limit. Because of mismatching of these profiles at low altitudes, only about 95 percent of the maximum net thrust possible could be realized without exceeding the local turbine-inlet temperature limit (fig. 5(a)). In the region above 75 percent of maximum net thrust for any flight condition, no large difference in specific fuel consumption was obtained for any particular schedule of exhaust-nozzle area and engine speed. Therefore, the exhaust-nozzle schedule used is not critical insofar as steady-state performance is concerned. Acceleration and thrust modulation are therefore the determining factors in the manufacturer's selection of an exhaust-nozzle schedule. The steady-state exhaust-nozzle schedule that allows the exhaust nozzle to remain open until rated engine speed is reached appears to give the best transient performance because: (1) the maximum rate of acceleration is possible, and (2) large increases in thrust may be obtained almost instantaneously by closing the exhaust nozzle at any engine speed. For example, at an engine speed of 6500 rpm, an altitude of 15,000 feet, and a flight Mach number of 0.62, it is possible to obtain about 55 percent thrust modulation. Using the previous example as a qualitative, but not quantitative guide, by operating with the exhaust nozzle open at the reduced thrust levels required during a landing approach or cruise condition, a large and almost instantaneous thrust increase is available in case of a "wave-off" or similar maneuver. Use of Pumping Characteristics and Combustion Efficiency to #### Calculate Engine Performance It is desirable to be able to calculate engine performance at flight conditions other than those presented in this report. In order to do this from pumping characteristics, it is necessary to define the effect of a change in engine operating and flight condition on several engine parameters. To meet this requirement, the effect of Reynolds number on engine pumping and air-flow characteristics must be determined. It is also necessary that the variation of combustion efficiency and effective velocity coefficient of the exhaust nozzle be defined in terms of engine parameters that are readily available. In the following paragraphs these relations will be discussed and the curves necessary to calculate engine performance will be presented. It is important to note that engine pressure ratio does not include inlet-duct losses. Performance including duct losses may be calculated if these losses are known. Engine air flow and pressure ratio. - Engine air flow and pressure ratio are shown as functions of engine temperature ratio for constant corrected engine speeds at a Reynolds number index of 0.222 in figures 6(a) and 7(a), respectively. Correction factors which account for the effect of Reynolds number on the air-flow and pumping characteristics are presented in figures 6(b) and 7(b). The correction factor for corrected air flow is the ratio of corrected air flow at the Reynolds number index in question to the corrected air flow at a Reynolds number index of 0.222. Similarly, the correction factor for engine pressure ratio is the ratio of pressure ratio at the Reynolds number index in question to the pressure ratio at a Reynolds number index of 0.222. Selection of the reference Reynolds number index (0.222 in this case) was made in order to utilize the high corrected engine speeds and engine temperature ratios investigated at this Reynolds number index. Combustion efficiency. - Combustion efficiency is presented as a function of a combustion parameter W_aT_6 in figure 8. The restrictions imposed by the derivation of this parameter, which is given in appendix B, are that the corrected engine speed be about 75 percent of rated speed or greater, and that the engine temperature rise be 700° F or more. Fuel flow. - With the assumption of unity combustion efficiency, engine temperature rise is plotted as a function of fuel-air ratio with lines of constant engine-inlet air temperature in figure 9 (data from reference 8). The use of this figure in conjunction with figure 8 makes it possible to calculate an actual fuel-air ratio. All the variables required to obtain fuel flow and ideal thrusts (no tail-pipe or nozzle losses) have been presented in figures 6 through 9. Effective velocity coefficient. - An effective velocity coefficient given in figure 10 is required to calculate actual values of thrust. An explanation of the parameters used on this figure is given in appendix A. A sample problem demonstrating the use of figures 6 through 10 is given in appendix C. Engine Performance Obtained from Pumping Characteristics #### and Direct Experimental Data Net thrust and fuel flow for the military and normal engine operating conditions are presented as a function of true airspeed for seven altitudes in figures 11 to 13. The data presented in figure 11 were calculated by means of the pumping characteristics and supplementary curves (figs. 6 to 10). Data presented on figure 12 were obtained from experimental data, using the method described earlier which avoids the necessity of duplicating flight ambient pressure in the tunnel test section. Figure 13 presents both experimental and calculated data. The experimental data shown in figures 12 and 13 were obtained at flight Mach numbers as high as 1.68. For military and normal conditions, the engine speed is 7260 rpm and the exhaust-gas temperatures are 1580° and 1440° R, respectively. These temperatures correspond to turbine-inlet temperatures of 1885° and 1750° R. These data show that at low flight speeds (fig. ll(a)) the net thrust decreased as flight speed was increased from 0 to about 275 knots. Above flight speeds of about 275 knots (figs. ll to 13), the net thrust increased with flight speed at an increasing rate up to a flight speed of about 900 knots. Further increase in flight speed resulted in a decrease in the rate at which net thrust increased (figs. ll(d) to 13). This latter trend is associated with the relation of inlet-air temperature to flight speed and the effect of reduced corrected engine speed and engine temperature ratio on the engine pressure ratio. Fuel flow increased with flight speed over the entire range of flight speeds. A comparison of experimental data and
data calculated from pumping characteristics is possible at an altitude of 60,000 feet (fig. 13). For the curves showing military operation, the maximum discrepancy in both net thrust and fuel flow is about 2 percent at high flight speeds. The curves showing normal operation are not in as close agreement, the maximum difference being about 4 percent at high flight speeds. #### SUMMARY OF RESULTS Fixed-exhaust-nozzle performance data were obtained at altitudes as high as 55,000 feet and flight Mach numbers as high as 0.99. In general, increasing the altitude resulted in an increase in corrected net thrust at a given corrected engine speed. Above a corrected engine speed of 7000 rpm, changing altitude at a given corrected engine speed had no effect on corrected air flow. However, below a corrected engine speed of 7000 rpm, the corrected air flow decreased as altitude was increased at a given corrected engine speed. For the four flight conditions at which engine performance maps were obtained, the minimum specific fuel consumption was about 1.20 pounds per hour per pound of thrust and occurred at an altitude of 35,000 feet and a flight Mach number of 0.62. The effect of exhaust-nozzle area and engine speed on specific fuel consumption was small at thrust levels above 75 percent of maximum. The selection of a schedule of exhaust-nozzle area and engine speed is therefore primarily dependent on the consideration of the acceleration characteristics. A method is presented to define the effect that a change in engine operating and flight condition would have on engine-pumping and air-flow characteristics, and combustion efficiency. This permits the calculation of net thrust and fuel flow for conditions at which data points were not obtained. These calculated values agreed closely with the actual values obtained. Curves of thrust and fuel flow for both military and normal operating conditions are shown for altitudes from 15,000 to 60,000 feet and flight speeds of zero to 1100 knots. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio #### APPENDIX A #### SYMBOLS AND METHODS OF CALCULATION Symbols | | The following symbols are used in this report: | 2733 | |---------------------------|---|----------| | A | cross-sectional area, sq ft | 33 | | В | thrust scale reading, 1b | | | Cv | effective velocity coefficient, ratio of scale jet thrust to rake jet thrust calculated at turbine outlet | - | | D | external drag of installation, lb | | | Fj | jet thrust, 1b | | | $\mathbf{F}_{\mathbf{n}}$ | net thrust, lb | | | g | acceleration due to gravity, 32.2 ft/sec2 | | | ĸ | constant | | | M | Mach number | -
 | | N | engine speed, rpm | * | | P | total pressure, lb/sq ft abs | 294
 | | р | static pressure, lb/sq ft abs | . == | | R | gas constant, 53.4 ft-lb/(lb)(OR) | | | т | total temperature, ^O R | | | t | static temperature, OR | | | Λ | velocity, ft/sec or knots | | | Wa | air flow, 1b/sec | | | Mg | gas flow, lb/sec | · . | | Wf | fuel flow, lb/hr | | | Υ | ratio of specific heats | <u>.</u> | δ - pressure of NACA standard atmosphere at sea level - η_{h} combustion efficiency - ρ density, slugs/cu ft - θ ratio of engine-inlet absolute total temperature to absolute static temperature of NACA standard atmosphere at sea level ratio of engine-inlet absolute total pressure to absolute static - φ ratio of absolute viscosity of air at the engine inlet to the absolute viscosity of NACA standard atmosphere at sea level - $\frac{\delta}{\varphi_{\delta}\theta}$ Reynolds number index #### Subscripts: e equivalent eff effective - i indicated - r rake - s scale - O free stream - l inlet duct - 2 engine inlet - 3 compressor inlet - 4 compressor outlet or combustor inlet - 5 combustor outlet or turbine inlet - 6 turbine outlet - 7 exhaust-nozzle inlet #### Method of Calculations Flight Mach number. - The flight Mach number, when complete rampressure recovery was assumed, was calculated from the expression $$M_{O} = \sqrt{\frac{2}{\Upsilon_{2}^{-1}} \left(\frac{P_{2}}{P_{O}}\right)^{\frac{1}{\Upsilon_{2}}} - 1}$$ $$(1)$$ Airspeed. - The following equation was used to calculate airspeed: $$V_{O} = M_{O} \sqrt{rgRT_{2} \left(\frac{p_{O}}{P_{2}}\right)^{\frac{\gamma_{2}-1}{\gamma_{2}}}}$$ (2) Temperature. - Total temperatures were determined from indicated temperatures by the following relation: $$T = \frac{T_{1}\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}}}{1 + 0.85\left[\left(\frac{P}{p}\right)^{\frac{\gamma-1}{\gamma}} - 1\right]}$$ (3) where 0.85 is the impact recovery factor for the type of thermocouple used. Air flow. - The air flow was determined from pressure and temperature measurements by the following equation: $$W_{a,1} = p_1 A_1 \sqrt{\frac{2\gamma_1 g}{(\gamma_1 - 1)Rt_1} \left[\frac{p_1}{p_1} \right]^{\frac{\gamma_1 - 1}{\gamma_1}} - 1}$$ $$(4)$$ Gas flow. - The gas flow downstream of the combustor was calculated as follows. $$W_{g,5} = W_{a,1} + \frac{W_{f}}{3600}$$ (5) Scale thrust. - Values of thrust based on scale measurements were found for both the data with fixed-exhaust-nozzle areas and control-scheduled data. The jet thrust of the installation was determined from the balance-scale measurements by using the following equation: $$F_{j,s} = B + D + \frac{W_{a,l} V_l}{g} + A_l(p_l - p_0)$$ (6) When a tail rake was installed, the drag of the rake was added to the right side of the equation. The last two terms of this expression represent the momentum and pressure forces on the installation at the slip joint in the inlet-air duct. The external drag of the installation was determined with the engine inoperative. Scale net thrust was obtained by subtracting the free-stream momentum of the inlet air from the scale jet thrust: $$F_{n,s} = F_{j,s} - \frac{W_{a,l} V_0}{g}$$ (7) Calculated thrust. - For the data shown in figures 11 through 13, thrust was calculated from conditions at the turbine outlet. For the experimental data, turbine-outlet conditions were measured; while, for data calculated from pumping characteristics, the turbine-outlet conditions were predicted from data at other flight conditions. Ideal jet thrust was calculated from conditions at the turbine outlet by the following equation: $$F_{j,r} = \frac{W_{g,6}}{g} V_{eff}$$ (8) In a perfect converging exhaust nozzle, $$V_{eff} = V_n + \frac{A_n(p_n - p_0)}{\frac{W_{g,6}}{g}}$$ (9) where V_n , A_n , and p_n are the velocity, the area, and the static pressure at the vena contracta. The term $V_{\rm eff}/\sqrt{\rm gRT}_6$ is called the effective velocity parameter and is a function of the exhaust-nozzle pressure ratio and specific heat ratio, as given in figure 14. A further discussion of the effective velocity concept is given in reference 9. The thrust calculated by equation (8) is an ideal thrust in that it does not include total-pressure losses in the tail pipe and the exhaust nozzle. These losses may most easily be considered by means of an effective velocity coefficient (fig. 10), which is defined as the ratio of scale jet thrust to jet thrust calculated at turbine-outlet conditions. The effective velocity coefficient was obtained from the data given in tables I and II and was found to be primarily a function of turbine-outlet Mach number. Inasmuch as it is impractical to calculate turbine-outlet Mach number by means of a static pressure, a more practical means was used. From continuity considerations $$\frac{W_{g,6}\sqrt{T_{6}}}{KP_{6}} = f(M_{6})$$ (10) where K is a constant equal to the effective flow area at the turbine outlet. In the data presented in figure 10, in which effective velocity coefficient $C_{\rm V}$ is shown as a function of turbine-outlet gas-flow parameter $W_{\rm g,6}\sqrt{T_{\rm 6}}/P_{\rm 6}$ the constant K has been included in the values of the gas-flow parameter on the abscisse. For the data for which calculated rather than scale values of thrust were used, the exhaust-nozzle pressure ratios p_0/p_6 may be below the limit imposed by the tunnel equipment. However, effective velocity coefficients based on a convergent nozzle are only slightly affected at exhaust-nozzle pressure ratios below critical. #### APPENDIX B #### DERIVATION OF COMBUSTION PARAMETER, WaTe If the turbine nozzles are assumed choked, $$\frac{W_g\sqrt{T_5}}{P_5} = K_1 \tag{11}$$ Experimental results from various engines show that in the range of operation where the turbine nozzles are choked the following relation is valid: $$T_5 \cong K_2 T_6 \tag{12}$$ Combining the two equations yields $$\frac{W_g\sqrt{T_6}}{P_5} \cong \frac{K_1}{\sqrt{K_2}} \tag{13}$$ Since $W_g \cong W_a$ and $P_5 \cong P_4$ $$\frac{W_a\sqrt{T_6}}{P_4} \cong \frac{K_1}{\sqrt{K_2}} \tag{14}$$ or $$P_4 \cong \frac{\sqrt{K_2}W_a\sqrt{T_6}}{K_1} \tag{15}$$ Because the Mach numbers are low at the combustor inlet (M < 0.2), the total temperature and pressure can be used with little error in place of the static temperature and pressure so that $$\rho_4 = \frac{P_4}{gRT_4} \tag{16}$$ and $$V_4 = \frac{W_e RT_4}{P_4 A_4} \tag{17}$$ Substituting equations (15) and (17) for pressure and velocity, respectively, in P_4T_4/V_4 yields the following equation: $$\frac{P_4 T_4}{V_4} \cong \frac{K_2 A_4 W_a T_6}{K_1^2 R}$$ (18) The parameter P_4T_4/V_4 has often been used to correlate combustion efficiency. Because all—the terms in the right side of equation (17) are constants except W_aT_6 , it may be used in place of P_4T_4/V_4 to correlate combustion efficiency. 2733 ### APPENDIX C #### SAMPLE PROBLEM The thrust and the fuel flow are calculated for the conditions of run 54 of table II. The following quantities are known: $$p_0 = 222 \text{ lb/sq ft}$$ $T_6 = 1532^{\circ} \text{ R}$ $$T_6 = 1532^{\circ} R$$ $$P_2 = 288 \text{ lb/sq ft}$$ N = 7260 rpm $$N = 7260 \text{ rpm}$$ $$T_2 = 435^{\circ} R$$ From these quantities
the following parameters may be calculated: $$N/\sqrt{\theta} = 7934 \text{ rpm}$$ $\sqrt{\theta} = 0.915$ $$\sqrt{\theta} = 0.915$$ $$T_6/T_2 = 3.50 \qquad \delta/\phi \sqrt{\theta} = 0.168$$ $$\delta/\varphi\sqrt{\theta} = 0.168$$ $$\delta = 0.1361$$ $$\delta = 0.1361$$ $V_O = 610 \text{ ft/sec}$ $$\theta = 0.838$$ From figures 6(a) and 7(a), $$\left(\frac{P_6}{P_2}\right)_{8 \text{ fp } \sqrt{\theta} = 0.222} = 2.130$$ $$\left(\frac{\mathbb{W}_{a}\sqrt{\theta}}{\delta}\right)_{\delta/\mathfrak{O}_{A}/\theta} = 0.222 = 148.2 \text{ lb/sec}$$ From figures 6(b) and 7(b), Correction factor for pressure ratio = 0.992 Correction factor for corrected air flow = 1.000 Therefore $$\left(\frac{P_6}{P_2}\right)_{\delta/\phi\sqrt{\theta}} = 0.168 = 2.113$$ $$\left(\frac{W_a\sqrt{\theta}}{\delta}\right)_{\delta/\phi\sqrt{\theta}} = 0.168 = 148.2 \text{ lb/sec}$$ $$(W_a)_{\delta/\phi\sqrt{\theta}} = 0.168 = 22.04 \text{ lb/sec}$$ $$(P_6)_{\delta/\phi\sqrt{\theta}} = 0.168 = 609 \text{ lb/sq ft}$$ In order to calculate fuel flow and thereby obtain gas flow, the following steps are required: $$W_aT_6 = (22.04)(1532) = 3.38X10^4 (1b)(^{O}R)/sec$$ From figure 8, $$\eta_{\rm b} = 0.928$$ The engine temperature rise is $$T_6 - T_2 = 1097^{\circ} R$$ From figure 9, $$(W_f/3600 W_a)_{ideal} = 0.0152$$ The actual fuel-air ratio is $$(W_f/3600 W_a)_{actual} = \frac{0.0152}{0.928} = 0.0164$$ The gas flow is $$W_{g,6} = W_{a} [1 + (W_{f}/3600 W_{a})_{actual}]$$ = (22.04)(1.0164) = 22.40 lb/sec The next steps in the calculation of thrust are as follows: $$p_0/P_6 = 222/609$$ = 0.365 $\gamma = 1.336$ for a $W_f/3600$ W_a of 0.0164 and a T_6 of 15320 R From figure 14, $$\frac{V_{eff}}{\sqrt{gRT_6}} = 1.328$$ and $$V_{eff} = 1.328 \sqrt{(32.2)(53.4)(1532)}$$ = 2155 ft/sec The ideal or rake jet thrust is $$F_{j,r} = (W_{g,6}/g) V_{eff}$$ = $\frac{22.40}{32.2} (2155)$ = 1499 lb The inlet momentum is $$\left(\frac{W_{a,1}}{g}\right) V_0 = \frac{22.04}{32.2}$$ (610) = 418 lb The ideal or rake net thrust is $$F_{n,r} = F_{j,r} - \frac{W_{a,l}V_0}{g}$$ = 1499 - 418 = 1082 lb The fuel flow is $$W_f = 3600 W_{a,l} [(W_f/3600 W_{a,l})_{actual}]$$ $$= (3600)(22.04)(0.0164)$$ $$= 1301 lb/hr$$ Values of calculated ideal net thrust and fuel flow are 1082 pounds and 1301 pounds per hour, respectively. The values from the data are 1087 pounds and 1292 pounds per hour. Therefore, the calculated values are 0.37 percent low for ideal net thrust and 0.70 percent high for fuel flow. In order to calculate an actual or more realistic thrust, it is necessary to obtain an effective velocity coefficient. The following steps are required: $$\frac{W_{g,6}\sqrt{T_6}}{P_6} = \frac{22.40\sqrt{1532}}{609} = 1.439$$ Using this value and figure 10, $$C_{vr} = 0.940$$ The actual jet thrust is $$(F_{j})_{actual} = C_{v} (F_{j,r})$$ $$= (0.940)(1499)$$ $$= 1409 lb$$ The actual net thrust is $$(F_n)_{actual} = (F_j)_{actual} - \frac{W_{a,1}V_0}{g}$$ = 1409 - 418 = 991 lb The specific fuel consumption is $$W_f/F_n = \frac{1301}{991} = 1.313$$ It should be noted that for any engine condition for which the performance may be desired, the corresponding engine speed and exhaust-gas temperature must be within the physical capabilities of the exhaust nozzle. This can be verified by the data of figure 5. #### REFERENCES - 1. Finger, Harold B., Essig, Robert H., and Conrad, E. William: Effect of Rotor- and Stator-Blade Modifications on Surge Performance of an ll-Stage Axial-Flow Compressor. I Original Production Compressor of XJ40-WE-6 Engine. NACA RM SE52GO3. - 2. Conrad, E. William, Finger, Harold B., and Essig, Robert H.: Effect of Rotor- and Stator-Blade Modifications on Surge Performance of an ll-Stage Axial-Flow Compressor. II Redesigned Compressor for XJ40-WE-6 Engine. NACA RM E52IlO. - 3. Prince, W. R., and Schulze, F. W.: Altitude Investigation of Gas Temperature Distribution at Turbine of Three Similar Axial-Flow Turbojet Engines. NACA RM E52H06. - 4. Sanders, Newell D., and Behun, Michael: Generalization of Turbojet-Engine Performance in Terms of Pumping Characteristics. NACA TN 1927, 1949. - 5. Sanders, Newell D.: Performance Parameters for Jet-Propulsion Engines. NACA TN 1106, 1946. - 6. Sobolewski, Adam E., Miller, Robert R., and McAulay, John E.: Altitude Performance Investigation of Two Single-Annular Type Combustors and the Prototype J40-WE-8 Turbojet Engine Combustor with Various Combustor-Inlet Air Pressure Profiles. NACA RM E52J07. - 7. Fleming, William A.: Effects of Altitude on Turbojet Engine Performance. NACA RM E51J15, 1951. - 8. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. NACA Rep. 937, 1949. (Supersedes NACA TN's 1655 and 1086.) - 9. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948. | | | | | | | | | | | | | TABLE I. | - FIXED- | |----------|----------|-------------------|----------------|----------------|--------------------|---------------------------|------------------------|----------------------|---------------------|----------------------|---------------|------------------|----------------| | Run | Altitude | Ram | Plight | Tunnel static | Reynolds
number | Equivalent
ambient-air | Engine-
inlet total | Aqtual
engine | Corrected
engine | Ideal
net | Actual
net | Corrected
net | Ideal
jet | | ļ | (ft) | pressure
ratio | Mach
number | pressure
DO | index
02/€2√€2 | temperature | temperature
T2 | speed
N | apeed
N-√02 | thrust
Pn,r | thrust | Fn,s 62 | Pj.r | | | , | P2/P0 | Mo | (lb/sq ft abs) | 02/427/02 | ⁶ 0, •
(°R) | (°R) | (rpm) | (rpm) | (379) | (16) | (13) | (15) | | | | <u></u> | l | | | | L | <u> </u> | | | | Exhaust | | | 1 | 15,000 | 1.298 | 0.522 | 1187
1184 | 0.758 | 464 | 500 | 6534
6353 | 6658
6467 | 4001
3511 | 3749
3255 | 5151
4472 | 5882)
5315 | | 2 | | 1.301 | .625
.621 | 1165 | .756
.754 | 465
464 | 501
500 | 6171 | 6288 | 3059 | 2827 | 3901
2800 | 4762
3845 | | 4 | | 1.298 | .622 | 1186 | .757 | 464
463 | 500
500 | 5808
5082 | 5918
5179 | 2296
1100 | 997 | 1577 | 2322 | | 6 | 35,000 | 1.303 | 0.627 | 479 | 0.358 | 413
413 | 445
446 | 6171
5990 | 6665
6483 | 1691
1487 | 1573
1563 | 5332
4621 | 2439
2201 | | 7
6 | 1 | 1.303 | .627 | 479
477 | .358
.355 | 413 | 448 | 5808 | 6267
5875 | 1279
925 | 1216
855 | 4142
2914 | 1952
1521 | | 10 | ļ | 1.299 | .623 | 478
479 | .854
.354 | 414 | 446
446
487 | 5445
5082 | 5483 | 856 | 568
2436 | 1935
5781 | 1195 | | 11 | | 1.873 | .992 | 476 | .482
.484 | 390
386 | 463 | 6554
6353 | 6887
6728 | 2677
2368 | | | 4019
3639 | | 1.5 | Į | 1.869 | .990 | 479
478 | .488 | 389
393 | 465 | 6171
5808 | 6517
6104 | 2051
1457 | 1515 | 3104 | 2696 | | 14
15 | | 1.863 | .987 | 481 | 0.221 | 393
404 | 469 | 5990 | 5346
6541 | 983 | 493
884 | 1184
5015 | 1802 | | 16 | 45,000 | 1.295 | 0.619 | 288
286 | .224 | 402 | 436 | 5808 | 6337
5935 | 840 | 795
567 | 4420
5176 | 1257
978 | | 18
19 | } | 1.311 | .634 | 288
289 | .222 | 404
405 | 437
438 | 5445
5082 | 5534 | 428 | 571 | 2069 | 761 | | | | - | | | | | 1 -04 | 7200 | 7369 | 4645 | 4382 | Exhaust
6052 | 6781 | | 20 | 15,000 | 1.292 | 0.618 | 1186
1184 | 0.747 | 468
468 | 504
503 | 7260 | 7192 | 4304 | 4114
3757 | 5694
5181 | 6386
5974 | | 22 | 1 | 1.292 | .616 | 1188 | .748 | 467 | 503
504 | 6897 | 6817 | | | | 5029 | | 24
25 | ŀ | 1.295 | .619 | 1183
1179 | .747 | 467
467 | 505
503 | 6534 | 6859
6270 | 3139
2363 | 2988
2264 | 4786
3136 | 4085 | | 26 | ł | 1.291 | .619 | 1185
1184 | .742 | 469
469 | 505
505 | 5808
5082 | 5889
5153 | 1708
751 | 1615
662 | 914 | 5261
2015 | | 27 | 35,000 | 1.295 | 0.627 | 479
478 | 0.360 | 411 | 445 | 7260
7078 | 7863
7652 | 2265
2160 | 2133 | 7229
6984 | 3180
3056 | | 29
30 | 1 | 1.297 | .621 | 478 | .358
.358 | 412
412 | 444 | 6897 | 7456 | 1989 | 1951 | 6657
6084 | 2852
2731 | | 31 | İ | 1.295 | .619 | 473
479 | .358 | 412
412 | 444
445 | 6716
6534 | 7260
7053 | 1875
1715 | 1575 | 5346
4319 | 2561
2106 | | 32
33 | | 1.300 | .624 | 479
478 | .358 | 415
413 | 445
445 | 6171
5808 | 6665
6273 | 973 | 1271
905 | 3067 | 1667 | | 34
35 | 1 | 1.298 | .622 | 479 | .358 | 413 | 445 | 5082
7260 | 5489
7830 | 459
2909 | 407
2724 | 1381
8472 | 1017 | | 36
37 | ì | 1.852 | .982 | 481
479 | .479
.482 | 594
591
592 | 467 | 7079
6897 | 7461
7269 | 2783 | 2580
2592 | 5104
5724 | 4703
4395 | | 58
59 | | 1.850 | .981 | 478 | .478 | 595 | 472 | 6716 | 7045
6808 | 2542
2291
1997 | 2124
1928 | 5030
4567 | 4106
3736 | | 40 | 1 | 1.857 | .984 | 481
478 | .471 | 400
394 | 478 | 6534 | 8480
6110 | 1522 | 1378 | 3278
2071 | 3144
2535 | | 42 | ! [| 1.863 | .987 | 480
481 | .480 | 393
394 | 469
470 | 5808
5082 | 5341 | 310 | 205 | 487 | 1502 | | 44 | 45,000 | 1.287 | 0.612 | 290 | 0.222 | 407
408 | 437 | 7079
6897 | 7716
7518 | 1385 | 1319
1256 | 7479
7078 | 1914 | | 46 | i | 1.280 | .614 | 289 | .222 | 406
405 | 437
436
436 | 6716
6534 | 7327
7129 | 1357
1357
1112 | 1158 | 6470
5943 | 1924 | | 47 | | 1.299 | .623
.616 | 287
289 | .222 | 405 | 436
435 | 6171
5808 | 6755
6342 | 875
635 | 801
601 | 4542
3393 | 1334 | | 49 |) | 1.301 | .825 | 288
287 | .224 | 405
405 | 435 | 5082 | 5550 | 314 | 274 | 1568 | 840 | | | | | 4 | | 1 | 466 | 502 | 7260 | 7383 | 4076 | 3670 | 5057 | 6216 | | 51
52 | 15,000 | 1.288 | 0.619 | 1186
1186 | 0.753 | 465 | 500
495 | 7079 | 7214 | 3904
3511 | 3580
3178 | 4927
4382 |
5996
5530 | | 53
54 | 5 | 1.289 | .614
.613 | 1191
1194 | .760 | 460
471 | 506 | 6716 | 8803
6645 | 3110
2822 | 2839
2583 | 3908
3562 | 5084
4728 | | 55 | 5 1 | 1.291 | .616 | 1188
1182 | .751
.753 | 467
466 | 502
502 | 6534 | 6276
5854 | 2055 | 1832 | 2524
1679 | 3785
2999 | | 57 | 7 | 1.295 | .619 | 1187
1187 | .755 | 475 | 511
507 | 5808
5082 | 5143 | 526 | 406 | 557 | 1812 | | 55 | 35,000 | 1.288 | 0.622 | 480 | 0.358 | 414 | 446 | 7260
7079 | 7834
7603 | 2020
1924 | 1815
1761 | 6167
5887 | 2926 | | 60 | 2 | 1.286 | .611 | £ 479 | .355 | 419
419 | 452
451 | 6897 | 7587
7206 | 1784
1658 | 1647 | 5600
4910 | 2654
2523 | | 62 | 2 | 1.305 | .627 | 480
481 | .356 | 418
421 | 455 | 6534 | 6998 | 1484 | 1305 | 3495 | 2505
1909 | | 64 | t | 1.294 | .619 | 480 | .353
.352 | 421
421 | 453
454 | 8171
5808 | 6609
6209 | 824 | 757 | 2498
1001 | 1519 | | 1 66 | 8 | 1.297 | .621 | 479 | .350 | 422
393 | 455
470 | 5082
7260 | 5428
7630 | 661
2551
2356 | 2327 | 5534 | 4494 | | 64 | в | 1.857 | .984 | 478 | .478 | 394
595 | 470 | 7074
6897 | 7440
7235 | 2648 | 2234 | 5526 | 4902 | | 61 | 0 | 1.870 | .990 | 477 | .473 | 596
594 | 472
472 | 6716
6534 | 7045
6854 | 1787 | 1827
1580 | 4374
5726 | 3834
3572 | | 7: | 1 | 1.875 | .992 | ! 4 78 | .478 | 394 | 471 | 8171
5808 | 6480 | 1309 | 1134 | 2680
1678 | 2951
2336 | | 73 | 3 | 1.868 | .989 | | .477 | 595
595 | 472
471 | 5082 | 5336 | 197 | 107 | 255 | 1392 | | 71 | 5 45,000 | 1.289 | 0.614 | 280
289 | 0.213 | 418
415 | 447 | 7280 | 7819
7624 | 1289
1240
1161 | 1216 | 6884
6440 | 1780 | | 7 | 7 I | 1.296 | .621 | 290 | .214 | 413 | 444 | 6897 | 7456
7253 | 1078 | 1083 | 5496 | 1885
1586 | | 7 | 8 | 1.283 | .608 | 290 | .215 | 409 | 441 | 6716
6534
6171 | 7089
6689 | 982 | 905 | 5055
5775 | 1495 | | 8 | 0 | 1.288 | .622 | 289
287 | ,216 | 411 | 442 | 5808 | 8296
5519 | 562
260 | 510
224 | 2895 | 980
598 | | 8 | | 1.311 | .634 | | .217 | 407 | 440 | 5082 | 351. | | | | | NACA | ctual | Corrected | Actual | Corrected | Actual | Corrected | Actual | Corrected | Actual | Corrected | Engine total- | Engine | Ru | |--------------|-------------------------|----------------|------------------|--------------------|--|--|---|-------------------------------|----------------|---|--------------------------------|----| | jet | Jet | air | air flow | fuel | fuel flow | specific fuel | specific fuel | exhaust-gas | exhaust-gas | pressure | total- | AC | | hrust
1.s | firest
Fj,s/52 | flow
Wa,1 | a, i 2 2 2 | flow | W _f /5 ₂ -/6 ₂
(lb/hr) | consumption W _f /F _{n,s} | consumption
W _f /F _{n,s} √02 | temperature
T ₆ | temperature | ratio
P ₆ /P ₂ | temperature
ratio | 1 | | (1b) | (15) | (15/sec) | (1b/sec) | (15/hr) | (11)111) | (1b)/(hr)
(1b thrust) | (1b)/(hr)
(1b thrust) | (oğ) | 16/62
(°ni) | | T ₆ /T ₂ | ١ | | res, 3 | 67 ag in. | <u> </u> | <u> </u> | | | (10 cm-use) | (10 tarust) | | | | | 느 | | 5630 | 7,736
6,951 | 92.15
87.82 | 124.31
118.56 | 4975
4405 | 6,966
6,161 | 1.327 | 1.352
1.376 | 1529 | 1587
1525 | 1.870
1.749 | 3.058
2.938 | Γ | | 5059
4530 | 6,251 | 83.62 | 1 775-22 1 | 3910 | 8.498 | 1.383 | 1.409 | 1472
1408
1302 | 1462 | 1.644 | 2.816 | ı | | 5585
2219 | 4,929
3,064 | 75.89 | 102.45
82.26 | 3095
1884 | 4,337
2,652 | 1.520 | 1.549
1.926 | 1111 | 1351
1163 | 1.464
1.176 | 2.504 | Ì | | 2521
2077 | 7,868
7,041 | 38.51
36.78 | 120.88
115.60 | 2070
1861 | 7,580
6,807 | 1.316
1.365 | 1.421 | 1476
1416 | 1721
1648 | 1.916
1.785 | 3.317
3.178 | T | | 1881 | 6,431 | 34.60 | 109.09 | 1659 | 1 6.088 | 1.362 | 1.470 | 1354 | 1576 | 1.678 | 3.036 | l | | 451
107 | 4,945
5,772 | 30.85
28.00 | 97.46
88.42 | 1300
1032 | 4,781
5,795 | 1.520 | 1.641
1.961 | 1242
1155 | 1446
1319 | 1.466 | 2.785 | 1: | | 173 | 9,989 | 58.25
55.65 | 131.08
125.55 | 3205
2840 | 8,016
7,186 | 1.516 | 1.587 | 1547
1464 | 1719
1641 | 1.995
1.878 | 3.313
3.162 | | | 754 | 6,510 | 55.38 | 119.46 | 2470
1850 | 6,165
4.596 | 1.409 | 7 403 | 1391 | 1551 | 1.731 | 2.991 | 1. | | 880 | 3,988 | 48.14
39.82 | 89.36 | 991 | 2,463 | 2.010 | 1.481
2.116 | 951 | 1053 | 1.478 | 2.028 | Į. | | 298
210 | 7,364
6,745 | 21.81 | 115.28
107.34 | 1315
1173 | 8,146
7,138 | 1.488 | 1.624
1.614 | 1525
1435 | 1818
1708 | 1.869
1.753 | 3.506
3.291 | | | 935
704 | 5,238
3,926 | 18.96 | 97.45
87.38 | 1175
942
779 | 5,753
4,728 | 1.661 | 1.611 | 1303
1180 | 1548
1399 | 1.496 | 2.982 | 1 | | 202 | 421 sq 1n | | | | | | | | | | | _ | | 518
196 | 9,001
8,575 | 105.12 | 143.07
139.82 | 5530
5150 | 7,752 | 1.262 | 1.281 | 1527
1474 | 1573
1521 | 1.935 | 3.030
2.930 | | | 785 | 7,978 | 99.94 | 135.72 | 4710
4545 | 6,599 | 1.254 | 1.274 | 1424 | 1470 | 1.791 | 2.831 | ı | | 878
986 | 6,737 | 92.70
84.44 | 126.07
115.18 | 3860
3080 | 5,416 | 1.292 | 1.315 | 1321
1219 | 1363
1258 | 1.620 | 2.626 | 1 | | 165 | 5,521
4,377
2,858 | 76.41 | 104.22 | 2440 | 4,334
3,422
2,229 | 1.513 | 1.534 | 1135 | 1165 | 1.454 | 2.425 | 1 | | 926
048 | 2,858 | 81.90
47.24 | 84.25 | 1593
2805 | 9.560 | 1.221 | 1.525 | 990
1530 | 1018 | 2.114 | 1.950 | + | | 947
914 | 10,035 | 46.65 | 146.90 | 2450
2275 | 9,016
8,390 | 1.195 | 1.291 | 1483
1428 | 1734
1669 | 2.069 | 3.340
3.216 | | | 839 | 9.004 | 44.69 | 141.04 | 2115 | 7.800 | 1.186 | 1.282 | 1383 | 1617 | 1.935 | 5.115 | 1 | | 421
044 | 8,217
6,946 | 45.68 | 137.11
125.97 | 1935
1580 | 7,100
5,797 | 1.229 | 1.328 | 1331 | 1556
1425 | 1.851 | 2.998 | 1 | | 599
965 | 5,454
5,275 | 36.04
26.79 | 113.85 | 1250
855 | 4,805
3,133 | 1.381 | 1.492 | 1122
979 | 1308
1142 | 1.454 | 2.521 | | | 650
500 | 11.048 | 84.86
84.47 | 146.69 | 3425
3205 | 8,554 | 1.257 | 1.322 | 1507
1467 | 1665
1630 | 2.009 | 3.206
3.141 | ł | | 245 | 10,158 | 62.64 | 142.19 | 2950 | 7,892 | 1.235 | 1.300 | 1410 | 1567 | 1.889 | 3.019 | | | 939
667 | 9,328
8,687 | 57.99 | 157.06
131.87 | 2670
2395 | 6,633
5,913 | 1.257 | 1.319 | 1358
1301 | 1494 | 1.780
1.659 | 2.877 | 1 | | 000
361 | 7,157
5,588 | 54.38
49.84 | 123.25 | 1855 | 4,634
3,517 | 1.346 | 1.414 | 1147 | 1265 | 1.485 | 2.435
2.196 | 1 | | 597
850 | 3,322 | 40.19 | 90.95 | 767 | 1,917 | 3.741 | 3.932 | 815
1551 | 901 | .959 | 1.734 | Ł | | 787 | 10,070 | 28.24 | 145.46 | 1650
1670 | 9,641 | 1.250 | 1.362 | 1515 | 1800 | 2.146 | 3.549
3.467
3.330 | 1 | | 705
554 | 9,693
8,821 | 26.55 | 138.01 | 1440 | 8,931
8,168
8,776 | 1.265 | 1.380 | 1452
1381 | 1728
1643 | 2.037 | 3.330
3.167 | İ | | 250
021 | 7,144 | 24.50
21.92 | 126.29 | 1095
895 | 8,776
5.516 | 1.367
1.489 | 1.492 | 1278
1171 | 1521
1396 | 1.728
1.502 | 2.931 | - | | 600 | 3,433 | 17.33 | 90.77 | 683 | 4,269 | 2.495 | 2.725 | 1029 | 1227 | 1.206 | 2.366 | l | | rea,
810 | 449 sq in. | 105.21 | 142.56 | 4680 | 6,559 | 1.275 | 1.297 | 1393 | 1440 | 1.754 | 2.775 | Т | | 652
197 | 7,822
7,167 | 103.79 | 140.95
135.59 | 4470 | 5,304
5,712 | 1.256 | 1.279 | 1366
1321 | 1418
1386 | 1.725 | 2.732
2.669 | | | 793 | 6,595 | 95.43 | 131.05 | 4045
3700 | 5.157 | 1.303 | 1.320 | 1270 | 1303 | 1.567 | 2.510 | | | 489
582 | 6,190
4,936 | 94.06
85.29 | 127.55
115.57 | 3410
2660 | 4,782
3,727
2,970 | 1.320
1.452 | 1.343 | 1129 | 1264
1167 | 1.508 | 2.434 | | | 789
692 | 5,840
2,320 | 76.37
62.26 | 104.32
84.35 | 2140
1360 | 2,970
1,886 | 1.756
3.350 | 1.769
3.389 | 1073
934 | 1090
956 | 1.215 | 2.100 | 1 | | 721
840 | 9,248
8,976 | 46.97
46.15 | 147.96
146.11 | 2510
2115 | 8,468
7,725 | 1.275 | 1.373 | 1399
1574 | 1628
1584 | 1.932 | 5.137
5.053 | † | | 517 | 8,558 | 44.73 | 141.93 | 1990 | 7,245 | 1.208 | 1.294 | 1340 | 1537 | 1.828 | 2.965 | | | 516
126 | 7,857
7,259 | 44.52 | 159.83
155.48 | 1825
1681 | 6,626
6,129 | 1.258
1.288 | 1.349 | 1260 | 1475
1422 | 1.764
1.675 | 2.838
2.737 | ١ | | 783
132 | 6,073
4,854 | 39.20
35.50 | 124.73
112.57 | 1385
1105 | 5,051
4,004 | 1.350 | 1.445 | 1142
1055 | 1510
1204 | 1.510 | 2.521 | - | | 841
270 | 2,864
10,154 | 28.13
65.11 | 89.71
147.34 | 753
2940 | 2,758
7,348 | 2.561 | 2.755
1.328 | 916 | 1045
1515 | 1.099 | 2.013 | ١ | | 105 | 9,786 | 82.90 | 142.72 | 2740 | 8,866 | 1.226 | 1.289 | 1371
1323 | 1462 | 1.816 | 2.815 | ١ | | 638 | 8,709 | 88.08 | 138.94 | 2515
2300. | 6,257
5,777 | 1.259 | 1.321 | 1283
1239 | 1411
1363 | 1.705 | 2.718 | | | 365
776 | 7,935
6,560 | 59.52
54.81 | 153.86
123.38 | 2050
1570 | 5,070 | 1.297 | 1.361 | 1171 | 1288
1165 | 1.557 | 2.481 | | | 195 | 5,202
3,101 | 49.65 | 112.21
91.15 | 1200
580 | 2,984
1,701 | 1.695 | 1.778 | 957
753 | 1031 | 1.171 | 1.985 | 1 | | 755 | 9,935 | 28.26 | 148.48 | 1520 | 9,267 | 1.250 | 1.546 | 1471 | 1706 | 1.993 | 3.291 | + | | 680
587 | 9,490 | 28.04
27.64 | 147.01 | 1450
1350 | 8,824
8,268 | 1.272 | 1.570 | 1450
1371 | 1659 | 1.965 | 3.199
3.088 | | | 471
416 | 8,395
7,927 | 26.96
26.56 | 142.48
137.05 | 1245 | 7,676
6,998 | 1.293 | 1.397 | 1325 | 1545 | 1.837 | 2.976 | | | 126 I | · 6,401 | 24.42 | 128.11 | 950 | 5.856 | 1.276
1.431
1.557 | 1.551 | 1267
1174
1100 |
1491
1379 | 1.741 | 2.875 | 1 | | 928 I | 5,268
3,149 | 17.35 | 115.79 | 794 | 4,888
3,818 | 1.557 | 1.688 | 1100 | 1293 | 1.390 | 2.489 | П | | Duy. | 1474644.2- | | 1774-1 | [= | | | | | 1- | | | 7 Cond | | |----------|------------------|----------------|----------------|----------------|---------------|-------------|------------------------|--------------------------|-----------------------|--------------------|---------------|------------------|------------------| | tun | Altitude
(ft) | Ram | Flight
Mach | Tunnel static | Reynolds | Equivalent | Engine-
inlet total | Actual
angine | Corrected
engine | Ideal
net | Actual
net | Corrected
net | Ideal
jet | | | 1, | ratio | number | present | index | temperature | temperature | speed | Breed | thrust | thrust | thrust | thrust | | | ļ | P2/P0 | Mo | (15/sq ft abs) | 02/427/02 | | T ₂ | , X | JI-√02 | Pn.r | 70.8 | Fn.8/8 | F _{1.r} | | | 1 | | l | |] | (°R) | (°R) | (rpm) | (rpm) | (1b) | (15) | (1b) | (15) | | | <u> </u> | L | i | l | <u> </u> | L | <u> </u> | | L | l | L | <u></u> _ | | | 83 | 15,000 | 1.298 | 0.622 | 1163 | 0.751 | 465 | 501 | 7260 | 7391 | 3732 | 3411 | Exhaust | 5905 | | 84 | 13,000 | 1.292 | .616 | 1186 | 750 | 465 | 500 | 7079 | 7214 | 2442 | 5100 | 4278 | 5545 | | 85 |) | 1.295 | .621 | 1188 | -748 | 468 | 504 . | 6897 | 7000 | 3126 | 2806 | 3855 | 5195 | | 86 | 1 | 1.295 | .619
.624 | 1187
1187 | .747 | 469
465 | 505
504 | 6716
6534 | 6810
6832 | 2789
2459 | 2498
2178 | 3440
2986 | 4781 | | 88 | | 1.301 | 625 | 1188 | .751 | 468 | 505 | 6171 | 8257 | 1734 | 1529 | 2093 | 4404
3506 | | 89 | | 1.294 | .619 | 1184 | -743 | 470 | 506 | 5806 | 5884 | 1217 | 1061 | 1465 | 2802 | | 90 | 35,000 | 1.295 | 0.631 | 2186 | 0.352 | 475 | 509 | 5082 | 5133 | 429 | 520
1629 | 441 | 1698 | | 92 | 35,000 | 1.294 | .619 | 474
478 | .555 | 411
412 | 444
445 | 7260
7079 | 7848
7867 | 1817
1710 | 1540 | 5566
5268 | 2732
2598 | | 93 | | 1.275 | .600 | 483 | .350 | 420 | 450 | 7079 | 7603 | 1692 | 1547 | 5315 | 2548 | | 94
95 | | 1.304 | .628
.624 | 480
477 | .561
.354 | 411
417 | 445
449 | 6897
6716 | 7469
7220 | 1622
1469 | 1596
1313 | 4720
4479 | 2525
2335 | | 96 | | 1.282 | .607 | 479 | -350 | 414 | 449 | 6534 | 7024 | 1351 | 1174 | 4046 | 2142 | | 97 | } | 1.291 | .616 | 482 | -356 | 417 | 449 | 8171 | 6634 | 1022 | 887 | 3016 | 1792 | | 98
99 | ĺ | 1.502 | .626
.634 | 480
479 | .359 | 414
414 | 445 | 5608
5082 | 6267-
5473 | 76 <u>1</u>
323 | 528
242 | 2126
816 | 1485
907 | | 00. | | 1.879 | .994 | 477 | .482 | 392 | 469 | 7280 | 7638 | 2311 | 2079 | 4909 | 4280 | | 02 | | 1.870 | .990 | 479
477 | .478 | 394
392 | 471
470 | 707 9
6897 | 7433
7249 | 2183
2010 | 1971 | 4656
4167 | 4124
3920 | | 03 | | 1.850 | .981 | 479 | .475 | 394 | 470 | 6716 | 7059 | 1795 | 1561 | 3702 | 3605 | | 104 | | 1.865 | .988 | 477 | .480 | 392 | 468 | 6534 | 6880 | 1599 | 1558 | 3706 | 3376 | | 05
06 | | 1.857 | .984 | 478
477 | .478
.476 | 595
594 | 471
471 | 6171
5808 | 6480
6098 | 1129
691 | 948
504 | 2259
1197 | 2759
2185 | | 107 | | 1.854 | .983 | 478 | .477 | 394 | 470 | 5062 | 5341 | 98 | 7 | 17 | 1303 | | 108 | 45,000 | 1.288 | 0.613 | 289 | 0.210 | 408 | 439 | 7260 | 7892 | 1183 | 1047 | 5952 | 1721 | | 09 | | 1.500 | .624 | 291
288 | .214 | 405 | 437 | 7079 | 7716 | 1159 | 1029 | 6755 | 1691 | | ii | | 1.301 | .625
.610 | 288 | .209 | 404
420 | 456
451 | 6897
6716 | 7525
7206
-7050 | 931 | 944
798 | 5314
4561 | 1627
1435 | | 12 | | 1.289 | .614 | 291 | .213 | 415 | 448 | 6534 | | 855 | 710 | 4004 | 1355 | | 15 | | 1.296 | .621
.621 | 291
291 | .216
.218 | 410
409 | 442
440 | 6171
5808 | 6689
6307 | 690
503 | 585
447 | 3282
2508 | 1162 | | 15 | | 1.300 | .624 | 291 | .216 | 415 | 447 | 5082 | 5473 | 228 | 140_ | 783 | 925
574 | | 16 | 15,000 | 1.297 | 0.621 | 1181 | 0.743 | 467 | 503 | 7260 | 7376 | 5212 | 2656 | Exhaust- | nozzle
5369 | | 17 | 15,000 | 1.294 | .619 | 1183 | .751 | 465 | 500 | 7079 | 7190 | 2955 | 2463 | 3406 | 5059 | | 18 [| | 1.295 | .619 | 1103 | -741 | 469 | 505 | 6897 | 6984 | | 2167 | 2993 | | | 20 | | 1.295
1.295 | .619 | 1183
1183 | .739
.738 | 470
472 | 506
508 | 6716
6534 | 6803
6606 | 2323
2013 | 1905
1623 | 2633
2241 | 4303
3926 | | 21 | | 1.298 | .622 | 1182 | .735 | 472 | 509 | 8171 | 6233 | 1443 | 1158 | 1597 | 5226 | | 122 | | 1.296 | .621 | 1182 | .732 | 474 | 510 | 5808 | 5860 | 801 | 725 | 1001 | 2502 | | 23 | 35,000 | 1.297 | 0.618 | 1181
479 | .750 | 474 | 511 | 8082 | 5125 | 232 | 158 | 191 | 1525 | | 24 | 35,000 | 1.295 | .619 | 480 | 0.360
.360 | 409 | 440
440 | 7260
7079 | 7884
7688 | 1539 | 1347
1274 | 4-601
4-337 | 2435 | | 26 | | 1.293 | .618 | 479 | -562 | 408 | 439 | 6897 | 7497 | | 1180 | 4039 | | | 27 | i | 1.297 | .621 | 479
481 | .359
.559 | 409
410 | 441 | 8716
6534 | 7287
7089 | 1525 | 10 53 | 3689
3280 | 2194 | | 29 | | 1.294 | .619 | 481 | .359 | 410 | 441 | 6171 | 5698 | 952 | 751 | 2553 | 1747 | | 30 | | 1.294 | .619 | 478 | .556 | 411 | 442 | 5808 | 6296 | 614 | 480 | 1643 | 1328 | | 31
32 | | 1.298 | .822 | 479
479 | .358
.480 | 410
392 | 442
468 | 5082
7280 | 5509
7645 | 228 | 159
1715 | 541
4073 | 794
4021 | | 33 i | | 1.861 | .986 | 478 | -479 | 592 | 468 | 7079 | 7454 | 1956 | 1580 | 3687 | 3882 | | 34
35 | | 1.872 | .991 | 477
476 | .482
.481 | 591
591 | 468
469 | 6897
6716 | 7263
7065 | 1801 | 1416 | 3356
2899 | 3704 | | 36 I | | 1.874 | .992 | 477 | .476 | 394 | 472 | 6534 | 6854 | 1368 | 1045 | 2470 | 3159 | | 37 | | 1.884 | .997 | 477 | .480 | 394 | 472 | 8171 | 8473 | 906 | 662 | 1559 | 2868 | | 38
39 | | 1.880 | .995 | 476
478 | .478
.479 | 393
393 | 471
471 | 5808
5082 | 8098
5356 | 536
-17 | 354
-145 | 790
-857 | 2054 | | 40 | 45,000 | 1.287 | 0.612 | 290 | 0.210 | 424 | 456 | 7260 | 7746 | 992 | 828 | 4696 | 1526 | | 41 | | 1.293 | .618 | 290 | .212 | 420 | 452 | 7079 | 7582 | | 795 | 4485 | | | 42
43 | | 1.302 | .626
.829 | 267
269 | .211 | 417
415 | 450 | 6897
6716 | 7407
7255 | 906
837 | 897
707 | 3946
3972 | 1443
1355 | | 44 | 1 | 1.298 | .622 | 290 | .215 | 413 | 447
445 | 6534 | 7057 | 768 | 622 | 3498 | 1282 | | 45 | | 1.278 | - 603 | 289 | .212 | 414 | 444 | 8171 | 6671 | 596 | 492 | 2619 | 1054 | | 48 | } | 1.295 | .619
.624 | 291
294 | .216
.221 | 411
411 | 443
443 | 5808
5082 | 6290
5504 | 363
174 | 332
90 | 1884
498 | 807
523 | | 48 | 50,000 | 1.284 | 0.609 | 224 | 0.168 | 405 | 435 | 7280 | 7928 | 849 | 716 | 5266 | 1266 | | 49 | | 1.266 | .591 | 254 | .171 | 405 | 433 | 7079 | 7752 | 819 | 693 | 4951 | 1231 | | 50
51 | į | 1.280 | -605
-624 | 225
222 | .150
.152 | 446
440 | 435
479
474 | 6716
6534 | 6991
6835 | 586
499 | 475 | 3474
3189 | 965
872 | | 52 | 1 | 1.283 | .608 | 226 | .147 | 451 | 484 | 5808 | 6011 | 250 [| 435
183 | 1535 | 547 | | 53 | | 1.295 | .619 | 225 | .147 | 451 | 486 | 5082 | 5250 | 84 | 2 | 15 | 323 | | 54 | 55,000 | 1.314 | 0.637 | 162 | 0.122 | 408 | 441 | 7079 | 7681 | 660 | 555 | 5516 | 984 | | 55
56 | ļ | 1.315 | .638
.628 | 164
169 | .128
.130 | 405
406 | 438
438 | 6716
6534 | 7314
7118 | 523
482 | 417
388 | 4092
3696 | 838
785 | | 57 j | | 1.295 | 619 | 168 | .129 | 407 | 438 | 5808 | 6325 | 262 | 240 | 2334 | 507 | | 58 I | ļ | 1.279 | . 504 | 170 | .124 | 410 | 440 | 5082 | 5519 | 124 | 91 | 885 | 309 | | FIXED-I | PIXED-EXHAUST-NOZZIE DATA | | | | | | | | | | | | | | |---------------|---------------------------|------------------|------------------|--------------|------------------------|-------------------------|------------------------------------|------------------------|---|--------------------------------|------------------|------------|--|--| | Actual
jet | Corrected
jet | Actual | Corrected | Actual | Corrected
fuel flow | Actual
specific fuel | Corrected
Specific fuel | Actual
exhaust-ges | Corrected
exhaust-gas | Engine total-
pressure | Engine
total- | Run | | | | thrust | thrust | flow | air flow | flow | Wr/02-/82 | consumption | consumption | temperature | temperature | ratio | temperature | 1 | | | | Fj,s (1b) | 71, 52
(1b) | Wa,1
(1b/sec) | (1b/sec) | (lb/hr) | (1b/hr) | (12)/(hr) | $V_1/V_{1,5}-\sqrt{V_2}$ (1b)/(hr) | 7 ₆
(°R) | τ _σ /θ ₂
(^c R) | P ₆ /P ₂ | Tatio | 1 1 | | | | (20) | (20) | (10/100) |] | (20) / | | (1b thrust) | (le thrust) | (", | () | | ~ 2 | 1 | | | | | 79 sq in. | | | | | | | | | | | = | | | | 5584
5203 | 7,695
7,180 | 105.84 | 143.97
140.60 | 4570
4030 | 6,131
5,668 | 1.281 | 1.304
1.525 | 1308
1259 | 1355
1307 | 1.659
1.615 | 2.511 | 83 | | | | 4876
4490 | 6,700 | 97.50 | 137.05 | 3715
3385 | 5,181
4,698 | 1.524 | 1.344 | 1224
1189 | 1261
1222 | 1.547 | 2.429 | 85 | | | | 4123
3301 | 5,653
4,519 | 94.58 | 127.78 | 3035 | 4,224 | 1.393 | 1.415 | 1145 | 1179 | 1.412 | 2.272 | 87 | | | | 254.6 | 3,654 | 85.96
77.58 | 116.05 | 2395
1945 | 3,325
2,721 | 1.566 | 1.589
1.457 | 1060 | 1031 | 1.265
1.162 | 2.099 | 88 | | | | 1589
2544 | 8,893 | 46.96 | 148.59 | 2000 | 7.388 | 1.228 | 1.527 | 1292 | 926
1510 | 1.812 | 2.910 | 91 | | | | 2428 | 8,306
8,257 | 46.45 | 146.83 | 1882 | 6,972
6,845 | 1.222 | 1.525 | 1248 | 1464 | 1.757 | 2.817 | 92 | | | | 2299 | 7,773 | 45.71 | 145.45 | 1855
1770 | 6.481 | 1.199 | 1.288 | 1256 | 1448 | 1.704 | 2.791
2.716 | 93 | | | | 2179
1985 | 7,433
6,840 | 44.65 | 141.61 | 1620
1512 | 5,942
5,600 |
1.254 | 1.527 | 1172 | 1355
1316 | 1.648
1.591 | 2.610
2.535 | 95 | | | | 1657
1352 | 5,634
4,578 | 40.14
57.51 | 126.92 | 1245
1030 | 4,549
3,762 | 1.404 | 1.508 | 1047
978 | 1210
1138 | 1.428 | 2.332 | 97 | | | | 826
4048 | 2,786
9,557 | 29.72
65.69 | 93.02 | 750
2615 | 2,725
6,495 | 3.099
1.258 | 3.339
1.323 | 864
1276 | 1002 | 1.068 | 1.933 | 100 | | | | 3912
3678 | 9,240
8,669 | 64.85
63.58 | 145.91 | 2475 | 6,139
5,586 | 1.256 | 1.319 | 1246 | 1344 | 1.649 | 2.645 | 101 | | | | 3361 | 8.025 | 61.02 | 138.58 | 2040 | 5,118 | 1.315 | 1.340 | 1194
1148 | 1269 | 1.531 | 2.540
2.443 | 102 | | | | 3335
2578 | 7,934
6,143 | 59.65 | 134.75 | 1825
1435 | 3,591 | 1.171 | 1.254 | 1097
988 | 1217
1090 | 1.450
1.274 | 2.344 | 104 | | | | 1996 | 4,741 | 49.89 | 112.85
92.27 | 1049
800 | 2,615
1,507 | 2.081
85.71 | 2.185
90.14 | 880
725 | 971
79 9 | 1.095 | 1.868 | 106 | | | | 1585 | 9,011 | 28.52 | 149.10 | 1574 | 8,493 | 1.512 | 1.427 | 1368 | 1617 | 1.865 | 3.116 | 108 | | | | 1581
1487 | 8,843
8,370 | 28.82
28.33 | 147.90 | 1310
1223 | 7,987
7,509 | 1.275
1.296 | 1.388 | 1315
1281 | 1562
1524 | 1.821 | 5.009
2.938 | 109 | | | | 1302 | 7,442
6,824 | 26.45
26.23 | 140.93 | 1020 | 6,751
6,210 | 1.380 | 1.480
1.551 | 1239 | 1426
1577 | 1.688 | 2.747
2.652 | 111 | | | | 1057 | 5,930
4,875 | 24.65
22.08 | 127.61 | 887
773 | 5,397
4,707 | 1.516 | 1.644 | 1105
1038 | 1296
1224 | 1.477 | 2.495
2.359 | 115 | | | | 486 | 2,719
535 sq in. | 17.88 | 92.85 | 663 | 3,995 | 4.736 | 5.100 | 942 | 1093 | 1.079 | 2.107 | 115 | | | | 4813 | 6,652 | 105.44 | 143.50 | 3760 | 5,279 | 1.416 | 1.438 | 1224 | 1263 | 1.529 | 2.455 | 116 | | | | 4567 | 6,316
5,821 | 103.46 | 140.71
136.54 | 3495
3200 | 4,481 | 1.419 | 1.442 | 1182
1145 | 1223
1177 | 1.483 | 2.370
2.267 | 117 | | | | 3885
3536 | 5,369
4,883 | 96.80 | 132.13 | 2885
2625 | 4,040
3,665 | 1.514 | 1.534 | 1107
1088 | 1136 | 1.367
1.310 | 2.188 | 119 | | | | 2941 | 4.056 | 86.62 | 118.32 | | 2.582 | 2,359 | | 1003 | 1025 | 1.194 | 1.971 | 121 | | | | 1451 | 1,976 | 77.76
62.73 | 106.45
85.94 | 1710
1170 | 1,628 | 8.478 | 2.379
8.543 | 936
843 | 856 | .956 | 1.835 | 122 | | | | 2245 | 7,669
7.387 | 47.20 | 148.44 | 1802
1690 | 6,685
6,246 | 1.538 | 1.453 | 1204 | 1420
1384 | 1.628 | 2.736 | 124
125 | | | | 2059 | 7,048
6,655 | 46.24
45.51 | 145.56 | 1580
1480 | 5,877
5,470 | 1.339 | 1.455 | 1128
1095 | 1535
1289 | 1.536 | 2.569
2.485 | 126 | | | | 1805 | 6,142 | 44.16 | 138.53 | 1360 | 5,023 | 1.411 | 1.531 | 1046 | 1231 | | 2.372 | 128 | | | | 1546
1194 | 5,256
4,086 | 41.68
57.34 | 130.63 | 1165
915 | 4,298
3,395 | 1.551 | 1.683
2.057 | 992
902 | 1060 | 1.362
1.205 | 2.249 | 129
130 | | | | 725
3662 | 2.467
6,697 | 29.49
65.51 | 92.60 | 680
2330 | 2,508
5,826 | 4.277
1.359 | 4.635
1.430 | 805
1205 | 945
1336 | 1.016
1.581 | 1.821
2.575 | 131 | | | | 3476
3319 | 8,269
7,866 | 64.76 | 146.29 | 2190 | 5,486
5,067 | 1.413 | 1.488 | 1164 | 1291 | 1.550 | 2.487 | 133
134 | | | | 3089 | 7,295
6,711 | 62.03
59.70 | 139.20 | 1815
1640 | 4,507 | 1.478 | 1.555 | 1055
1021 | 1166 | 1.347 | 2.249 | 135 | | | | 2519 | 5,461
4,378 | 55.00
50.51 | 125.55 | 1245
938 | 5,076
2,329 | 1.881 | 1.975 | 912
818 | 1005 | 1.172 | 1.932 | 137 | | | | 1096 | 2,587 | 41.30 | 92.84 | 528 | 1,307 | | | 685 | 756 | .800 | 1.454 | 139 | | | | 1362
1332 | 7,724 | 27.85
27.86 | 147.92 | 1200
1130 | 7,259
6,826 | 1.449 | 1.546 | 1265
1254 | 1440
1415 | 1.686 | 2.774 | 140 | | | | 1234 | 6,986
6,903 | 27.59
26.98 | 145.45 | 1057 | 6,425 | 1.516 | 1.628 | 1193
1158 | 1376
1343 | 1.621 | 2.651 | 142 | | | | 1136
950 | 6,388 | 26.67 | 138.87 | 930
789 | 5,646 | 1.495 | 1.614 | 1109 | 1293
1205 | 1.512 | 2.492 | 144 | | | | 756 | 5,444
4,244 | 24.51
22.19 | 129.90
115.10 | 673 | 4,888 | 1.604
2.027 | 1.754
2.194 | 937 | 1099 | 1.209 | 2.322 | 145 | | | | 1135 | 8,353 | 18.10 | 92.62 | 585
995 | 7,995 | 1,390 | 1.518 | 1290 | 1022 | 1.034 | 2.966 | 148 | | | | 1105
852 | 7,894
6.258 | 22.76
19.45 | 148.51 | 953
801 | 7.458 | 1.575 | 1.506 | 1234 | 1480
1316 | 1.712 | 2.850 | 149 | | | | 808 | 5.924 | 18.73 | 151.24 | 750
659 | 5,756 | 1,724 | 1.809 | 1147 | 1255 | 1.407 | 2.420 | 151 | | | | 241 | 5,505
1,751 | 15.11 | 106.48 | 566 | 4,977 | 284.0 | 3.727
293.5 | 1027
931 | 1100
993 | 1.159
.982 | 2.122 | 152
153 | | | | 879
732 | 8.756
7.184 | 16.55 | 151.45 | 654
779 | 8,322 | 1.539 | 1.670 | 1337
1138 | 1574 | 1.815 | 3.032 | 154
155 | | | | 688
485 | 6,605
4,716 | 15.69
12.85 | 138.37 | 744
855 | 7,777
6,933 | 1.952 | 2.104 | 1126 | 1335
1159 | 1.570 | 2.571 | 156 | | | | 276 | 2,685 | 9.96 | 89.22 | 637 | 6,732 | 7.000 | 7.604 | 924 | 1089 | 1.071 | 2.100 | 158 | IACA | |--------| | 꽃 | | E52K1(| | • | | run | (ft) | Rem
pressure
ratio
P ₂ /p ₀ | Flight
Kaob
number
Mo | Tunnel static
pressure
Po
(lb/sq ft sbs) | Remolds
number
index | Equivalent
ambient-air
temperature
to,a
(On) | Engine-
inlet total
temperature
T ₂
(°R) | Engine
speed
N
(rpm) | Exhaustonossis projested area An (sq in.) | net
thrust
Pn,r
(1b) | Actual
nat
thrust
pn.s
(1b) | Jet
thrust
[],r
(1b) | Actual
jet
thrust
F _{j,s}
(1b) | flow
U _{a,l}
(lb/sec) | Puel
flow
V _f
(1b/hr) | Specific
fuel
consumption
W _f /F _{n,s}
(lb)/(hr)
(lb thrust) | Exheunt-
gas
tempera-
ture
Tg
(OR) | Engine
total-
pressure
ratio
Po P2 | Engine
total-
temperatur-
ratio
Tg/T2 | |---|--------|---|---|---
---|--|--|---|---|---|--|--|--|--|---
---|--|---|--| | 1
2
3
4
5
6
7 | 18,000 | 1.502
1.291
1.292
1.296
1.298
1.299
1.299
1.299
1.291
1.287 | 0.525
.818
.818
.821
.529
.615
.625
.616
.809 | 11.63
11.63
11.65
11.65
11.65
11.68
11.90
11.90 | 0.757
.763
.752
.754
.759
.759
.749
.751
.759
.741 | 464
461
485
445
472
473
489
477
477
478 | 500
494
600
501
508
509
508
513
807
803 | 7260
7260
7260
7260
7260
6716
6584
5606
5662
3695
5086 | 418
442
455
511
556
835
835
836
836
836
838 | 4765
4358
4014
3359
2294
1965
-195
-330 | 4346
3858
3642
2647
1637
1607
689
167
-253
-338 | 8947
6506
6151
6509
4273
5879
1471
700
529 | 6528
6105
5779
5097
3812
3603
2256
1422
640
323 | 106.21
106.61
105.51
106.50
95.92
92.82
77.64
81.25
44.30
38.70 | 5555
4965
4615
3905
2905
2905
1980
1180
775
584 | 1.278
1.259
1.267
1.325
1.576
1.576
1.691
21549
61946 | 1532
1425
1366
1257
1129
1077
941
874
790
688 | 1.955
1.926
1.747
1.876
1.356
1.998
1.065
.948
.058
.912 | 3.084
2.875
2.752
2.469
2,209
2,116
1.885
1.704
1.558
1.386 | | 111
12
13
14
15
16
17
16
17
16
17
16
17
18
20
21
22
23
24
25
26
27
28
28
29
30
40
40
40
40
40
40
40
40
40
40
40
40
40 | 35,000 |
1,017
1,020
1,014
1,014
1,018
1,019
1,021
1,022
1,022
1,022
1,022
1,023
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,290
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200
1,200 | 0.158
141
140
144
150
154
175
176
175
164
175
168
1629
1625
168
1629
1625
163
164
165
165
165
165
165
165
165
165
165
165 | 477 478 478 478 478 478 478 478 478 479 479 479 479 479 478 480 480 476 477 477 477 477 478 478 478 478 | 0.278 0.278 2.278 2.278 2.280 2.280 2.285 2.284 2.285 2.285 2.350 3.360 3.300 | 443
441
442
441
440
456
457
457
457
457
457
457
457
457
410
410
410
410
410
410
410
410
410
410 | 445
444
445
445
440
440
440
440
440
440 | 7/850
7/850
7/850
7/850
7/850
7/850
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853
8/853 | 435
435
437
535
535
535
535
535
535
535
535
535
5 | 2044
2040
1610
1547
1248
1547
1248
1000
472
199
199
107
107
107
107
107
107
107
107
107
107 | 1886
1881
1581
1581
1581
1181
1181
1181 | 2275
2225
2225
1978
1978
1485
1485
1489
250
250
250
250
250
250
250
250
250
250 | 2067
2086
1846
1346
1359
1357
1508
87
1509
251
194
162
3053
2612
2612
2612
27
27
3053
150
2612
2612
27
3053
3053
3053
3053
3053
3053
4654
4654
4654
4654
4654
4654
4654
46 |
56.48
58.46
58.757
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
58.57
5 | 2070
2071
1750
1310
1302
1302
1302
1302
1302
1302
130 | 1.000 | 1585
1565
1466
1217
1217
1227
1221
1011
1011
1011
1011 | 2.110
2.101
1.818
1.755
1.678
1.578
1.578
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058
1.058 | S. 617
S. 509
S. 509 | | 44
45
45
47
48
49
50
51
52
53 | 45,000 | 1.288
1.284
1.268
1.294
1.263
1.265
1.294
1.298
1.302 | 0.616
.611
.809
.813
.819
.807
.808
.821
.805 | 290
290
292
289
289
281
291
268
291
289 | 0.295
,294
,291
,210
,234
,212
,212
,219
,218 | 406
407
409
408
408
412
411
406
413
407 | 456
437
439
439
487
442
441
440
441
439 | 7260
7260
7260
7260
7260
7260
7079
6718
6534
6808
5082 | 436
436
467
480
536
536
536
535
535 | 1592
1401
1245
1185
1057
992
864
760
400
161 | 1274
1310
1141
1047
970
820
750
681
513 | 1956
1940
1785
1721
1802
1522
1572
1288
818
508 | 1918
1948
1679
1595
1415
1360
1246
1169
751
475 | 28.80
28.72
28.70
28.52
26.71
28.24
22.48
24.61
22.45
17.92 | 1840
1849
1445
1374
1218
1161
1000
926
675
595 | 1.287
1.259
1.286
1.319
1.394
1.591
1.370
1.404
9.150
4.562 | 1504
1513
1395
1368
1258
1216
11133
1092
938
686 | 2.135
2.128
1.945
1.855
1.758
1.699
1.691
1.511
1.325
1.036 | 3.450
3.462
5.178
5.118
2.879
2.781
2.869
2.462
2.127
2.018 | | 54
56
57
58
59
60
61
62
63 | 60,000 | 1.294
1.299
1.299
1.270
1.394
1.200
1.300
1.300
1.305
1.295 | 0,519
.625
.625
.895
.896
.841
.605
.624
.606 | 222
222
223
227
224
234
234
235
222
226
226 | 0.168
.168
.168
.167
.168
.171
.150
.150
.152
.147 | 404
405
405
406
406
405
446
440
451
451 | 435
436
437
434
430
433
479
474
484
486 |
7280
7250
7280
7280
7280
7078
6716
6534
6834
6808
5062 | 442
447
471
483
856
835
835
835
835
835
836 | 1087
1081
1067
963
849
819
886
499
250
84 | 1002
987
1004
980
738
695
478
455
185 | 1809
1808
1484
1375
1954
1251
965
872
547
325 | 1424
1414
1451
1270
1453
1106
852
808
480
241 | 22.88
22.53
22.53
22.49
22.76
19.45
18.75
15.11
11.82 | 1292
1262
1232
1112
955
953
801
750
659
598 | 1.288
1.299
1.297
1.295
1.390
1.375
1.693
1.724
5.601 | 1652
1522
1502
1506
1290
1234
1214
1147
1027
951 | 2.098
2.088
2.081
1.911
1.785
1.712
1.498
1.407
1.159 | 5.522
5.499
5.457
5.194
2.850
2.534
2.420
2.122
1.916 | | 64
65
66
67
68
69
70
71
72 | 65,000 | 1.800
1.265
1.324
1.302
1.314
1.315
1.304
1.295
1.279 | 0.635
.591
.647
.626
.537
.538
.628
.619 | 168
168
161
163
162
164
169
168
170 | 0.195
.122
.122
.122
.122
.122
.130
.130 | 410
414
406
411
406
405
407
410 | 443
443
442
445
441
438
438
438
440 | 7260
7260
7260
7260
7079
6715
6554
5806
5062 | 481
488
487
527
535
535
535
535 | 817
818
780
849
840
525
482
264 | 768
767
693
581
656
417
385
240 | 1245
1119
1119
988
984
838
785
507
309 | 1083
1058
1095
801
879
732
883
485
276 | 18.81
18.46
16.70
16.57
16.53
16.12
15.49
12.65
9.96 | 108h
1080
1002
908
854
779
744
655
837 | 1.411
1.400
1.444
1.585
1.589
1.860
1.932
2.729
7.000 | 1534
1544
1517
1546
1537
1138
1125
977
824 | 2.092
2.134
1.990
1.885
1.815
1.847
1.570
1.275 | 3.463
3.465
3.432
5.036
5.032
2.596
2.971
2.231
2.100 | STATE OF THE PROPERTY P Figure 1. - View looking downstream of inlet of prototype J40-WE-8 turbojet engine. Figure 2. - Prototype J40-WE-8 turbojet engine installed in test section of altitude wind tunnel. | Station | Location | Total -
pressure
tubes | Static-
pressure
tubes | Wall static-
pressure
orifices | Thermo-
couples | |---------|----------------------|------------------------------|------------------------------|--------------------------------------|--------------------| | 1. | Inlet-air duct | 29 | 12 | 6 | 10 | | 2 | Engine inlet | 18 | 0 | 4 | 0 | | 3 | Compressor inlet | 23 | 3 | 7 | 0 | | 4 | Compressor outlet | 18 | 0 | 3 | 6 | | 5 | Turbine inlet | 5 | .0 | 0 | 10 ^a | | 6 | Turbine outlet | 20 | 0 | 8 | 24 | | 7 | Exhaust-nozzle inlet | 16 | 2 | 8 | 0 | a Sonic flow probes CD-2732 Figure 3. - Top view of prototype J40-WE-8 turbojet-engine installation showing stations at which instrumentation was installed. Figure_4. - Effect of altitude on corrected engine performance at flight Mach number of 0.62. Figure 4. - Continued. Effect of altitude on corrected engine performance at flight Mach number of 0.62. (f) Corrected specific fuel consumption; exhaust-nozzle area, 535 square inches. Figure 4. - Continued. Effect of altitude on corrected engine performance at flight Mach number of 0.62. (h) Corrected exhaust-gas temperature; exhaust-nozzle area, 535 square inches. Figure 4. - Continued. Effect of altitude on corrected engine performance at flight Mach number of 0.62. NACA RM E52KlO (i) Corrected net thrust; exhaust-nozzle area, 421 square inches. Figure 4. - Continued. Effect of altitude on corrected engine performance at a flight Mach number of 0.62. (j) Corrected net thrust; exhaust-nozzle area, 535 square inches. Figure 4. - Concluded. Effect of altitude on corrected engine performance at a flight Mach number of 0.62. (a) Altitude, 15,000 feet; flight Mach number, 0.62; equivalent inletair temperature, $468^{\rm O}$ R. Figure 5. - Engine performance maps. (b) Altitude, 35,000 feet; flight Mach number, 0.99; equivalent inletair temperature, 393° R. Figure 5. - Continued. Engine performance maps. (c) Altitude, 35,000 feet; flight Mach number, 0.62; equivalent inletair temperature, 4140 R. Figure 5. - Continued. Engine performance maps. (d) Altitude, 45,000 feet; flight Mach number, 0.62; equivalent inletair temperature, 410° R. Figure 5. - Concluded. Engine performance maps. Figure 6. - Variation of corrected air flow with Reynolds number index, corrected engine speed, and engine temperature ratio. Figure 7. - Variation of engine pressure ratio with Reynolds number index, corrected engine speed, and engine temperature ratio. Figure 8. - Variation of combustion efficiency with combustion parameter. Figure 9. - Engine temperature rise as function of fuel-air ratio. Lower heating value, 18,700 Btu per pound; hydrogen-carbon ratio, 0.171. 44 Figure 10. - Variation of effective velocity coefficient with turbine-outlet gasflow parameter. Figure 11. - Variation of net thrust and fuel flow with flight speed obtained by calculation from pumping characteristics. Engine speed, 7260 rpm. Figure 11. - Continued. Variation of net thrust and fuel flow with flight speed obtained by calculation from pumping characteristics. Engine speed, 7260 rpm. Figure 11. - Continued. Variation of net thrust and fuel flow with flight speed obtained by calculation from pumping characteristics. Engine speed, 7260 rpm. Figure 11. - Continued. Variation of net thrust and fuel flow with flight speed obtained by calculation from pumping characteristics. Engine speed, 7260 rpm. Figure 11. - Concluded. Variation of net thrust and fuel flow with flight speed obtained by calculation from pumping characteristics. Engine speed, 7260 rpm. Figure 12. - Variation of net thrust and fuel flow with flight speed from experimental data. Altitude, 55,000 feet; engine speed, 7260 rpm. Figure 13. - Variation of net thrust and fuel flow with flight speed obtained from experimental data and data calculated from pumping characteristics. Altitude, 60,000 feet; engine speed, 7260 rpm. Figure 14. - Variation of effective velocity parameter with pressure ratio for convergent nozzle. 2.0 ## SECURITY INFORMATION NASA Technical Library 3 1176 01435 6456 ļ ě